562 research outputs found

    Keyframe-based visual–inertial odometry using nonlinear optimization

    Get PDF
    Combining visual and inertial measurements has become popular in mobile robotics, since the two sensing modalities offer complementary characteristics that make them the ideal choice for accurate visual–inertial odometry or simultaneous localization and mapping (SLAM). While historically the problem has been addressed with filtering, advancements in visual estimation suggest that nonlinear optimization offers superior accuracy, while still tractable in complexity thanks to the sparsity of the underlying problem. Taking inspiration from these findings, we formulate a rigorously probabilistic cost function that combines reprojection errors of landmarks and inertial terms. The problem is kept tractable and thus ensuring real-time operation by limiting the optimization to a bounded window of keyframes through marginalization. Keyframes may be spaced in time by arbitrary intervals, while still related by linearized inertial terms. We present evaluation results on complementary datasets recorded with our custom-built stereo visual–inertial hardware that accurately synchronizes accelerometer and gyroscope measurements with imagery. A comparison of both a stereo and monocular version of our algorithm with and without online extrinsics estimation is shown with respect to ground truth. Furthermore, we compare the performance to an implementation of a state-of-the-art stochastic cloning sliding-window filter. This competitive reference implementation performs tightly coupled filtering-based visual–inertial odometry. While our approach declaredly demands more computation, we show its superior performance in terms of accuracy

    Constraints on porosity and mass loss in O-star winds from modeling of X-ray emission line profile shapes

    Get PDF
    We fit X-ray emission line profiles in high resolution XMM-Newton and Chandra grating spectra of the early O supergiant Zeta Pup with models that include the effects of porosity in the stellar wind. We explore the effects of porosity due to both spherical and flattened clumps. We find that porosity models with flattened clumps oriented parallel to the photosphere provide poor fits to observed line shapes. However, porosity models with isotropic clumps can provide acceptable fits to observed line shapes, but only if the porosity effect is moderate. We quantify the degeneracy between porosity effects from isotropic clumps and the mass-loss rate inferred from the X-ray line shapes, and we show that only modest increases in the mass-loss rate (<~ 40%) are allowed if moderate porosity effects (h_infinity <~ R_*) are assumed to be important. Large porosity lengths, and thus strong porosity effects, are ruled out regardless of assumptions about clump shape. Thus, X-ray mass-loss rate estimates are relatively insensitive to both optically thin and optically thick clumping. This supports the use of X-ray spectroscopy as a mass-loss rate calibration for bright, nearby O stars.Comment: 20 pages, 20 figures. Accepted by Ap

    Constraints On Porosity And Mass Loss In O-Star Winds From The Modeling Of X-Ray Emission Line Profile Shapes

    Get PDF
    We fit X-ray emission line profiles in high resolution XMM-Newton and Chandra grating spectra of the early O supergiant zeta Pup with models that include the effects of porosity in the stellar wind. We explore the effects of porosity due to both spherical and flattened clumps. We find that porosity models with flattened clumps oriented parallel to the photosphere provide poor fits to observed line shapes. However, porosity models with isotropic clumps can provide acceptable fits to observed line shapes, but only if the porosity effect is moderate. We quantify the degeneracy between porosity effects from isotropic clumps and the mass-loss rate inferred from the X-ray line shapes, and we show that only modest increases in the mass-loss rate (less than or similar to 40%) are allowed if moderate porosity effects (h(infinity) less than or similar to R-*) are assumed to be important. Large porosity lengths, and thus strong porosity effects, are ruled out regardless of assumptions about clump shape. Thus, X-ray mass-loss rate estimates are relatively insensitive to both optically thin and optically thick clumping. This supports the use of X-ray spectroscopy as a mass-loss rate calibration for bright, nearby O stars

    A Generalized Porosity Formalism For Isotropic And Anisotropic Effective Opacity And Its Effects On X-Ray Line Attenuation In Clumped O Star Winds

    Get PDF
    We present a generalized formalism for treating the porosity-associated reduction in continuum opacity that occurs when individual clumps in a stochastic medium become optically thick. As in previous work, we concentrate on developing bridging laws between the limits of optically thin and thick clumps. We consider geometries resulting in either isotropic or anisotropic effective opacity, and, in addition to an idealized model in which all clumps have the same local overdensity and scale, we also treat an ensemble of clumps with optical depths set by Markovian statistics. This formalism is then applied to the specific case of boundfree absorption of X-rays in hot star winds, a process not directly affected by clumping in the optically thin limit. We find that the Markov model gives surprisingly similar results to those found previously for the single-clump model, suggesting that porous opacity is not very sensitive to details of the assumed clump distribution function. Further, an anisotropic effective opacity favours escape of X-rays emitted in the tangential direction (the venetian blind effect), resulting in a bump of higher flux close to line centre as compared to profiles computed from isotropic porosity models. We demonstrate how this characteristic line shape may be used to diagnose the clump geometry, and we confirm previous results that for optically thick clumping to significantly influence X-ray line profiles, very large porosity lengths, defined as the mean free path between clumps, are required. Moreover, we present the first X-ray line profiles computed directly from line-driven instability simulations using a 3D patch method, and find that porosity effects from such models also are very small. This further supports the view that porosity has, at most, a marginal effect on X-ray line diagnostics in O stars, and therefore that these diagnostics do indeed provide a good clumping insensitive method for deriving O star mass-loss rates

    Simultaneous Optical Flow and Intensity Estimation from an Event Camera

    Get PDF
    Event cameras are bio-inspired vision sensors which mimic retinas to measure per-pixel intensity change rather than outputting an actual intensity image. This proposed paradigm shift away from traditional frame cameras offers significant potential advantages: namely avoiding high data rates, dynamic range limitations and motion blur. Unfortunately, however, established computer vision algorithms may not at all be applied directly to event cameras. Methods proposed so far to reconstruct images, estimate optical flow, track a camera and reconstruct a scene come with severe restrictions on the environment or on the motion of the camera, e.g. allowing only rotation. Here, we propose, to the best of our knowledge, the first algorithm to simultaneously recover the motion field and brightness image, while the camera undergoes a generic motion through any scene. Our approach employs minimisation of a cost function that contains the asynchronous event data as well as spatial and temporal regularisation within a sliding window time interval. Our implementation relies on GPU optimisation and runs in near real-time. In a series of examples, we demonstrate the successful operation of our framework, including in situations where conventional cameras suffer from dynamic range limitations and motion blur

    An extended quantitative model for super-resolution optical fluctuation imaging (SOFI)

    No full text
    Super-resolution optical fluctuation imaging (SOFI) provides super-resolution (SR) fluorescence imaging by analyzing fluctuations in the fluorophore emission. The technique has been used both to acquire quantitative SR images and to provide SR biosensing by monitoring changes in fluorophore blinking dynamics. Proper analysis of such data relies on a fully quantitative model of the imaging. However, previous SOFI imaging models made several assumptions that can not be realized in practice. In this work we address these limitations by developing and verifying a fully quantitative model that better approximates real-world imaging conditions. Our model shows that (i) SOFI images are free of bias, or can be made so, if the signal is stationary and fluorophores blink independently, (ii) allows a fully quantitative description of the link between SOFI imaging and probe dynamics, and (iii) paves the way for more advanced SOFI image reconstruction by offering a computationally fast way to calculate SOFI images for arbitrary probe, sample and instrumental properties

    Modeling broadband X-ray absorption of massive star winds

    Get PDF
    We present a method for computing the net transmission of X-rays emitted by shock-heated plasma distributed throughout a partially optically thick stellar wind from a massive star. We find the transmission by an exact integration of the formal solution, assuming that the emitting plasma and absorbing plasma are mixed at a constant mass ratio above some minimum radius, below which there is assumed to be no emission. This model is more realistic than either the slab absorption associated with a corona at the base of the wind or the exospheric approximation that assumes that all observed X-rays are emitted without attenuation from above the radius of optical depth unity. Our model is implemented in XSPEC as a pre-calculated table that can be coupled to a user-defined table of the wavelength dependent wind opacity. We provide a default wind opacity model that is more representative of real wind opacities than the commonly used neutral interstellar medium (ISM) tabulation. Preliminary modeling of \textit{Chandra} grating data indicates that the X-ray hardness trend of OB stars with spectral subtype can largely be understood as a wind absorption effect.Comment: 9 pages, 9 figures. Includes minor corrections made in proof

    Wind Signatures In The X-Ray Emission-Line Profiles Of The Late-O Supergiant Zeta Orionis

    Get PDF
    X-ray line-profile analysis has proved to be the most direct diagnostic of the kinematics and spatial distribution of the very hot plasma around O stars. The Doppler-broadened line profiles provide information about the velocity distribution of the hot plasma, while the wavelength-dependent attenuation across a line profile provides information about the absorption to the hot plasma, thus providing a strong constraint on its physical location. In this paper, we apply several analysis techniques to the emission lines in the Chandra High Energy Transmission Grating Spectrometer (HETGS) spectrum of the late-O supergiant zeta Ori (O9.7 Ib), including the fitting of a simple line-profile model. We show that there is distinct evidence for blueshifts and profile asymmetry, as well as broadening in the X-ray emission lines of zeta Ori. These are the observational hallmarks of a wind-shock X-ray source, and the results for zeta Ori are very similar to those for the earlier O star, zeta Pup, which we have previously shown to be well fit by the same wind-shock line-profile model. The more subtle effects on the line-profile morphologies in zeta Ori, as compared to zeta Pup, are consistent with the somewhat lower density wind in this later O supergiant. In both stars, the wind optical depths required to explain the mildly asymmetric X-ray line profiles imply reductions in the effective opacity of nearly an order of magnitude, which may be explained by some combination of mass-loss rate reduction and large-scale clumping, with its associated porosity-based effects on radiation transfer. In the context of the recent reanalysis of the helium-like line intensity ratios in both zeta Ori and zeta Pup, and also in light of recent work questioning the published mass-loss rates in OB stars, these new results indicate that the X-ray emission from zeta Ori can be understood within the framework of the standard wind-shock scenario for hot stars

    Atomic Physics of Shocked Plasma in Winds of Massive Stars

    Get PDF
    High resolution diffraction grating spectra of X-ray emission from massive stars obtained with Chandra and XMM-Newton have revolutionized our understanding of their powerful, radiation-driven winds. Emission line shapes and line ratios provide diagnostics on a number of key wind parameters. Modeling of resolved emission line velocity profiles allows us to derive independent constraints on stellar mass-loss rates, leading to downward revisions of a factor of a few from previous measurements. Line ratios in He-like ions strongly constrain the spatial distribution of Xray emitting plasma, confirming the expectations of radiation hydrodynamic simulations that X-ray emission begins moderately close to the stellar surface and extends throughout the wind. Some outstanding questions remain, including the possibility of large optical depths in resonance lines, which is hinted at by differences in line shapes of resonance and intercombination lines from the same ion. Resonance scattering leads to nontrivial radiative transfer effects, and modeling it allows us to place constraints on shock size, density, and velocity structur
    • …
    corecore